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ABSTRACT 

The set of invariant measures of a compact dynamical system is well known to be 
a nonempty compact metrizable Choquet simplex. It is shown that all such tim- 
plices are realized already for the class of minimal flows. Moreover, sufficient is 
the class of 0-1 Toeplitz flows. Previously, it is proved that the set of invariant 
measures of the regular Tocphtz flows contains homcomorphic copies of all metric 
compacta. 

I. Introduction 

The list of  various examples of  minimal dynamical systems which are not 

uniquely ergodic is long. We mention here only several of  them. In 1952, Oxtoby 

[12] presented a construction of a minimal flow with exactly two ergodic measures. 

In 1969, Jacobs and Keane [7] introduced Toeplitz sequences, which include the 

example of  Oxtoby and gave rise to further investigation of  non-uniquely ergodic 

minimal flows (e.g. [10]). An example of a flow, ergodic measures of  which form 

a closed arc, was given in 1981 by Katznelson and Weiss [8]. In [13], Williams gave 

a construction of  a Toeplitz flow in I~ z with ergodic measures corresponding bi- 

jectively to the elements of  the compact set IL Based on this construction, in [1] 

we give an example of  a 0-1 Toeplitz flow with noncompact  set of  ergodic 

measures. 

In this paper we show that the set of invariant measures of a minimal flow may 

have the affine-topological structure of  an arbitrary metrizable compact Choquet 

simplex. Moreover, all such simplices are obtained for the class of  0-1 Toeplitz 

flows. In particular, by the result of  Choquet and Haydon (e.g. [5]), the set of er- 

godic measures may have the topological structure of  an arbitrary Polish space. 
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II. Preliminaries 

By a dynamical system (flow) we will mean a pair (X, S), where X is a compact 

metric space and S is a homeomorphism of X onto itself. A nonempty closed sub- 

set Y of X is called minimal if Y is invariant (i.e. SY = Y) and it has no proper 

closed invariant subsets. It is well known that then Y is equal to the orbit closure 

O(x) = [SJx:j E Z]- of any x E Y. Clearly, different minimal subsets of (X, S) 

are disjoint. 

A probability Borel measure/Z on X is called invariant if/Z = S/z, where S# is 

given by S#(B) =/Z(S-IB). An invariant measure is called ergodic if every invari- 

ant Borel set has the measure 0 or 1. The set of all invariant measures of (X, S) 

will be denoted by M(X, S). The set M(X, S) is well known to be a Choquet sim- 

plex and the ergodic measures are its extreme points. We will consider the weak* 

topology in M(X, S) given by the convergence on continuous real-valued functions 

on X. In this setting M(X, S) is compact. If  M(X, S) is a singleton then (X, S) is 

called uniquely ergodic. If the flow (O(x), S) is uniquely ergodic then we call x 

uniquely ergodic and by x* we will denote the invariant measure of this flow. 

Let p = (Pn) be an increasing sequence of natural numbers. An element x in 

(X, S) is called p-generic whenever the weak* limit/z = limp~-l~,P£ol sit~x exists, 

where/~x denotes the point measure at x. Then/z E M(X, S). For Pn - n the 

(pn)-generic points are called generic. If/z is an ergodic measure then/z-almost 

every x E X is generic for/z (see [4]). Let X be zero-dimensional and ~t be a fam- 

ily of  clopen sets such that [SJU:j E Z, U E ~t} is a base for X. If  the trajectory 

of  an element x E X visits every U E °tt with p-density, i.e. if the limits 

p(U) = limp~-'][O <_j<p~:SYxE Ull 
n 

exist, then x is p-generic for an invariant measure/Z such that/Z(U) = p ( U )  for 

every U E ~t. 

We establish an additional notation for the 0-1 shift flow, i.e. for X = [0,1 }z 

and S given by S~(j) = ~(j + 1) ( j  E Z). Suppose A is some space and [aj: 

j E Z] a fixed sequence of  elements of  A. Given a function f :  A-~ C0,1}, by 

f E  10,1 ]z we will denote the sequence f ( j )  =f(afl. I f f  is uniquely ergodic for 

the shift flow, then the appropriate measure will be denoted by f*.  If  now h is a 

mapping of some set K into [0,1 }~ then the mapping h : K - ~  C0,1 ]z is given by 
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_h(x) = _h(_x). If, moreover, each _h(x) is uniquely ergodic then h* is defined on K 

by h*(x) = (h(x))*. 

llI. Toepfitz sequences 

As in [13], for any sequence ~ E I: z (~; compact) and any p E N we denote 

Perp(~) = [ j  E Z :  ~( j )  = 7/(k) whenever j = k rood p} 

and 

Aper(~) = Z \  U Perp(~). 
pEN 

A sequence 7/is called Toeplitz if Aper(7/) = ~ .  It is known that the orbit closure 

of  a Toeplitz sequence in the shift flow is minimal (see [7]). A sequence ~/for which 

Z = I,.JneN Per2-(7) will be called dyadic Toeplitz. In this section we will consider 

the case of  r. = 10,1 }. 

Consider the compact monothetic group A2 of  dyadic integers (see [6]). The el- 

ement 0 = ( 1 , 0 , 0 , 0 . . . )  is a topological generator of  A2, i.e. [jO :j E Z] is dense 

in A z. Topologically A 2 can be identified with the classical Cantor set C by send- 

ing t = (tl,t2 . . . .  ) to the real number ~ = 1  (2ti/3i). The natural ordering of  C 

corresponds to the lexicographical order in A 2. The points jO (j  E Z) are uni- 

lateral cluster points in A 2. Let f :  A 2 --, [0,1} be continuous at each jO. As in 

[2, sect. 2], it follows that f given b y f ( j )  =f(jO) is a dyadic Toeplitz sequence 

(see also [9]). 

REU_~RIC 1. Consider an interval (r, s) = [ t : r < t < s } in A 2. Clearly, if nei- 

ther r nor s is in ZO then the indicator l(r.s) is continuous at each j0.  In the other 

case, it becomes continuous at each j0  if (r,s) is modified by attaching, if neces- 

sary, one or both endpoints. 

Denote t ° =  20 = (0,1,0,0,0 . . . .  ), t 1 = (1,0,1,0,1,0 . . . .  ), t z= - 0  = (1,1,1 . . . .  ). 

DEFISmON 1. A function f :  A2 ~ [0,1] is said to have a core if f = 0 on 

[ t ° , t  ~) and f =  1 on (t~,t2].  

Tm~OgEM 1. Suppose f and g both have the core and are continuous at each jO. 

I f  the sequences f and g belong to the same minimal orbit closure, then f = g. 

PROOF. Assume that g = lim S"*f. Choose a subnet n,~ of  nk such that n~O 

converges to some s and the functions fn~ defined by fn~ (t)  = f (n~  0 + t i converge 

pointwise o n  A 2 t o  a function g'. Since f,~ = S"~f, we obtain _g' = g. Further, we 

have g'(t) = f ( s  + t) whenever s + t is a continuity point o f f  S i n c e f  is continu- 



244 T. DOWNAROWICZ Isr. J. Math. 

ous at each jO, it remains to show that s = (0,0 . . . .  ), the neutral element of A2. 

Suppose, to the contrary, that there exists the least number m _> 1 for which 

Sm= 1. If m is even, fix t = (1,0,1,0, . . .  ,1,0,0,0 . . . .  ), where tm-~ is the last 

digit 1. Clearly, t is of the form j0, so g'(t) = g(t). Since g has the core and t E 

[ t °, t ~ ), g (t) = 0. On the other hand, the first m digits of  s + t are 1,0,1,0 . . . . .  1, l, 

hence s + t E ( t l , t2] .  Thus, s + t is a continuity point o f f ,  and f ( s  + t) = 1. We 

have obtained 0 = g'(t) =f (s  + t) = 1, a contradiction. For an odd m > 1 a sim- 

ilar argument works with t = (1,0,1,0 . . . . .  1,0,1,1,1 . . . .  ), where tm+l is the last 

digit 0. Analogously, by taking t = t o for s starting with the digits 1,0, and t = 

(1,1,0,0,0 . . . .  ) for s starting with 1,1, we eliminate the remaining case m = 1, 

which ends the proof of the theorem. 

The quasi-uniform convergence in 10,1 }z is given by the Weyl pseudometric 

Dw(T1,Tf) = lim sup L -1 [[0 _<j < L :7/(k + j )  ¢ ~/'(k + J)}l. 
L k 

It follows from Lemma 5 in [2] that for Riemann integrable functions f on h2 the 

convergence in L~ ()Q, where k is the normalized Haar measure on h2, implies the 

quasi-uniform convergence of the sequences f .  

A Toeplitz sequence 7/is called regular if the supremum over p E N of the den- 

sities of  the sets Perp0?) equals 1. I f  the set of discontinuities o f f :  A2 --* [0,1 } is 

disjoint with ZO and has the )~ measure 0, t h e n / i s  regular (see [2, Remark 1]). 

Every regular Toeplitz sequence is uniquely ergodic and the quasi-uniform conver- 

gence of uniquely ergodic sequences implies the weak* convergence of their mea- 

sures ([7], see also [2, Theorem 2]). 

Denote by Tc the set of all functions f :  A 2 -~ [0,1 } such that 

(1) f is Riemann integrable; 

(2) the set of  discontinuities o f f  is disjoint with ZO and it has the ~ measure 0; 

(3) f has the core. 

We endow Tc with the convergence in L~(X) norm. By Tff we will mean the set 

f *  : f E  Tc endowed with the weak* topology. Notice that, by Theorem 1 and the 

remarks on quasi-uniform convergence, f ~ f *  is a one-to-one continuous map- 

ping between Tc and T~. 

TnEo~M 2. For every compact metric space K there exists a homeomorphic 

embedding h of K into Tc. 

PROOF. Fix some t 3 E (0, t °) C A2, not of the form jO. Then ~ [0, t 3) = a > 0. 

Let [ an : n >_ 1 } be a family of strictly positive continuous functions, which sepa- 
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rates the points of  K and such that r.an (x) =- a on K. For x E K we partition 

[0, t 3) into consecutive intervals An (x) such that each indicator l&,cx ) is contin- 

uous at each jO (see Remark 1) and ), ( A ,  ( x )) = an ( x ). Now, let fx : A2 ~ [ 0,1 } be 

the function with the core defined on [0, t °) as the indicator of  the set UA2n(x) .  

Since the endpoints of  the A2n(x) 's  accumulate only at t 3, fx is continuous at 

each jO. The set of  discontinuities of fx  is countable, hence f~ E To. Clearly, the 

mapping h : x ~ f x  is continuous in L 1 ()k).  We show that it is 1-1. Let x :# y in K 

and let n be the least number for which an(x) ~ an(Y), say an(x) < an(y). Then 

fx ~ fy everywhere on the (nonempty) interior of  An(y) fq An+1 (x), which ends 

the proof.  

COROLLARY 1. The mapp&g h * & a homeomorphic embedding of  K into T*. 

IV. Affine embedding 

First we establish some more notation. For a block b = b(0)b(1)  . - .  b(n - 1) 

(b E 10,1In), by Ibl we denote its length n, and for 0 _< m < m'  _< Ibl, by 

b[m,m')  we will mean the block b(m)b(m + 1 ) . . . b ( m '  - 1). If blocks b, bo 

satisfy I bl -< I bol then we denote by Fgo(b) the frequency at which b occurs in 

bo, i.e. 

F~o(b) = Ibol-'llm E N : 0  < m < Ibol - Ibl,  bo[m,m + Ibl) = bl l .  

Moreover, for 0 _< j < k, we define 

Fgo(b,k,j ) = Ibol - l l lm E N : 0  < m < Ibol - Ibl ,  

m = j m o d  k, bo[m,m + Ibl) = b}l. 

If Ibl > Ibol then we let F~o(b) = Fb*o*(b,k,j) = 0. Clearly, 

k-1 

F~o(b) = ~_j F~,o(b,k,J) 
j=O 

for every bo, b and k. 

Let v* be the weight of blocks given by v*(b) = 2 -Ibl. Fix a sequence ck > 0 such 

that Zkoaa Ck = 1. Let v** be the weight of  the triples (b,k,j)  with k odd and 0 _< 

j < k, given by v**(b, k,j) = 2-1blck. It is easily seen that fFgo dr* =fFg  o dr** < 1 

for every block bo. We define two metrics on the set of blocks: 
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= a n d  d**(bl,b2)= 

Clearly d* < d**. 

By a cylinder Ub we will mean the set {7 E {0,1}z:7[0,lbD = b}. For a shift 

invariant measure # on {0,1} z we write F~(b) = #(Ub) and F~*(b,k , j )  = 

k- l#(Ub) .  Clearly fF~  dr* = fF~* dv** = I. Since invariant measures are distin- 

guished by its values on cylinders Ub, we can extend the domain of the metrics 

d* and d** to comprise M([0,1 }z,s) by simply replacing one or both bi's by 

#g'S in the defining formulas for d* and d**. It is easy to see that d*(#~ ,#2) = 

d**(#~ ,#2), and d*(#. ,#)  ~ 0 iff ~. -~ ~ in the weak* topology. It is also easily 

verified that, for large n, the measure n -~ ,.2i=kX'k+"-~ S~6, (7 E [0,1 }z) is of small 

d*-distance from the block 7[k ,k  + n).  In particular, this implies that if (b.)  is 

a sequence of blocks appearing in some subshift (Y,S) ,  such that lb. [ ~ 0% then 

there exists a subsequence b., convergent in d* to a measure # E M(Y, S). On the 

other hand, for every ergodic measure ~ on Y, there exists a sequence (b.)  of 

blocks in Ywith d*(bn,#) --* O; in fact, take b. = ~[O,n), where 7 is generic for #. 

DEFINITION 2. By Mo(Y,S)  we denote the set of all invariant measures ~ of 

(Y, S) for which 

d*(b, ,#)  - .  O ~ d**(b, ,#) --} O, 

for every sequence (b,)  of blocks appearing in Y. 

An easy proof of the following lemma is omitted. 

LEMMA 1. For every regular dyadic Toeplitz sequence 7 we have 7" E 

Mo( O( 7) ,S) . In particular, d**(7[0,n),7*)-~ 0. 

Another observation will be useful. 

LEMMA 2. For i = 1,2 . . . . .  n let bi be some blocks o f  the same length m 

and #i some invariant measures on [0,1} z. I f  d**(bi,#i) < ~ for  each i then 

d**( bo,n-l~7=l #i) <- 2~, where bo is the block o f  the length nm obtained by the 

concatenation of  the blocks bl, b 2 , . . . ,  bn. 

PROOF. Observe that 

F~,o(b,k,j) >- n-~[F~,7(b,k,j) + F~,;(b,k,( j  - re)k) 

+ ' '  "+ F~,*~(b,k,(j - (n - 1)re)k)]. 
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Since F ; ~ ( b ,  k , j )  does not depend on j ,  we have 

n -~ ( b , k , ( j  - ( i  - 1)m)k) -- n -~ ~_aF~**(b,k, j)  d v * * ( b , k , j )  
i=l 

f 
--1 **  k " = n i ( b ,  , ( J - - ( i - - 1 ) m ) k )  

- n - '  } - ] F ~ * 7 ( b , k , ( j  - (i - 1)re)k) d v * * ( b , k , j )  
i = 1  

_ • < n - I  I o,(b,  , ( J - - ( i - - 1 ) m ) k )  

-- F ~ * ( b , k , ( j  - ( i  - 1)m)k)l d v * * ( b , k , j )  

I1 

= n - l  ~ , d * * ( b i , # i )  <-- ~. 
i = 1  

Since fF~,~ dv** = 1, the obtained inequality implies in particular that 

n -1 ( b , k , ( j -  ( i -  1 ) m ) k ) d v * * ( b , k , j )  >- 1 - e .  

Thus, by the first inequality in the proof  we obtain 

d i=1  

and finally 

-1 V '  p**  dr** < 2e, d** b o , n  -1 #i = * * -  n i~=1 - ~i - 

which ends the proof.  

Some more remarks on the structure of  A2 will be necessary. Let H m  = { t E A2 : 

tl = tz . . . . .  t m =  01. Then H m  = { 2 m j o : j E  Z } -  and H m  is a clopen subgroup 

of  A2 homeomorphically isomorphic to A2. For the map t ~ t + 0, A2 can be 

viewed as a 2m-tower • 

Hrn'-* Hm + 0 " * " ' - - ~  Hm + ( 2  m - I ) 0 .  
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DEFIIqITIOlq 3. For i = 1,2 . . . . .  n fix ai > 0, ~ = 1  ai = 1 and f / E  To. Let {Ai: 

i = 1,2 . . . . .  n} be the partition of  Hm into consecutive intervals with )~(Ai) = 

2-mai (modified as in Remark 1). We define 

n 2m-- I  

M I X m ( a l f l , a 2 f 2  . . . . .  anfn) = ~,  ~ 1A,+j0f~'. 
i=1 j=O 

The following remarks are easy to verify: 

(4) M I X m ( a l f , , a 2 f 2  . . . . .  anf~) ~ Tc; 

(5) the sequence MIXm ( a l f l ,  a2f2 . . . . .  anfn) equals f / o n  a subset of Z of den- 

sity ai, built of  intervals of  the form [k2m,(k + 1)2m). 

Recall that a convex metrizable subset K of  a topological vector space is called 

a Choquet  simplex if each x E K is a barycenter of  a unique probability measure 

#x supported by the set ex K of  the extreme points of  K. The map/~x ~ x, map- 

ping the probability measures on ex K onto K, is then affine, continuous and bi- 

jective. If, in addition, ex K is compact then this map is an affine homeomorphism, 

in which case K is called a Bauer simplex. It is known that every compact metriz- 

able Choquet  simplex is affinely homeomorphic to the intersection of  a decreas- 

ing sequence of  metrizable Bauer simplices ([3, Thin 9]). 

Let B be a Bauer simplex and let h* be some homeomorphism of  B into T*. 

Since h*(ex B) is a compact extreme subset of the Choquet simplex of  all shift in- 

variant measures on [0,1 }z, it follows that C = ~ h*(ex B) is a Bauer simplex. 

The formula h~(x)  = fe×Bh*(y)dl~x(y) defines an affine homcomorphism of  B 

onto C. 

LEMMA 3. Let B be a metric Bauer simplex and let h : B ~ Tc be a homeo- 

morphic embedding. Then for  every ~ > 0 there exists a homeomorphic embedding 

hB : B -~ Tc and m E N such that 

(i) d*(h~(x ) ,h~(x ) )  < 5e f o r a l l x E  B; 

(ii) for  each x E B and k E Z the block b = h_B ( x ) [ k 2 m + 1,(k + 1)2 m) appears 

in h (y )  f o r  some y E ex B and d**(b, h*(y)) < ~. 

PROOF. Choose a finite subset { e~, e: . . . . .  en } of  ex B such that for every x E 

B there exists y in F =  conv[el,e2 . . . . .  e~l with d*(h~(x ) ,h~(y ) )  <_ ~. Since d* is 

a convex metric, it follows from Michael's Theorem [11] that there exists a con- 

tinuous mapping z : B  ~ F such that d*(h~(x) ,h~  (r(x)))  < e. Since F is again a 

Bauer simplex, we have z ( x )  = ~'/=~ ai(x)ei,  where the functions ai are uniquely 

determined and continuous. By the regularity of  the Toeplitz sequences h (el) and 

by Lemma 1, it is not hard to see that there exists m E N such that for each i and 
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each block b, with Ib[ = 2 m - 1, appearing in h(ei) we have d**(b,h*(ei)) <_ e. 

We are in a position to define hA. For x E B let 

g(x)  = MIXm (am (x)h (el),  a2 (x)h (e2) . . . . .  an (x)h  (en)). 

Let also g'(x)  :Hm ~ [0,1 } be given by g ' (x ) ( t )  = h (x)(2-mt)  (multiplication by 

2 - "  gives a homeomorphism of Hm onto A2). Finally define hA(x) on A2 by 

r g ' ( x ) ( t )  for t E Hm, 

h s ( x ) ( t )  = ~ g ( x ) ( t )  otherwise. 

It is clear that hA(x) satisfies (1) and (2). Also, since Hm C [0, to), hA(x) satisfies 

(3), so hA(x) E To. By the continuity of the functions ai and g', it is seen that hA 

is a continuous mapping. Also, since g' is 1-1, such is hA, so hA is a homeo- 

morphic embedding of B into T~. Observe that if b = hA(x) [k2  m + 1, ( k  + 1)2 m) 

for some x E B, k E Z then b = g(x)  [k2  m + 1,(k + 1)2 m) and, by (5), b ap- 

pears in h_(ei(k)) for some t _ i (k )  <_ n. Since Ib[ = 2 m --  1 and by the choice 

of m, we have d**(b,h*(ei(k))) <- ~ and (ii) is proved. Now, if m is chosen large 

enough, we have d**(b,b[1,2m)) < E for every block b of the length 2 m. Hence, 

d**(hn(x) [k2m,(k + 1)2m),h*(ei(k))) < 2E and, by Lemma 2, for r E N, 

(0 ,) d** 8(x)[O, r2m), rir-lh*(ei _< 4e, 
i=l  

where r~ = Ill <-- k <_ r : i ( k )  = i1[. Passing to the limit in r and using (5) and 

Lemma 1 we obtain that d**(h~(x), Z~=I ai(x)h*(ei)) <- 4e. By the definitions of 

* d (h~(x),h.~(r(x))) <_ E the asser- r and h l ,  Z]~'=l ai(x)h*(ei) = h~(r(x)) .  Since ** * 

tion (i) is proved. 

TrIEOREM 3. Let K be a compact metrizable Choquet simplex. Then there ex- 

ists a closed invariant set Y in ({0,1 ]z ,s)  such that M ( Y , S )  coincides with 

Mo(Y, S) and it is affinely homeomorphic to K. 

PROOF. We can represent K as an intersection of decreasing metric Bauer sim- 

plices (B , , d ) .  Let h~ be the mapping h of Theorem 2 applied to B~. Let also 

el = 1. Suppose, for some n _> 2, we have already defined a homeomorphic em- 

bedding hn_~ :Bn-~ ~ T~ and en-~ > 0, so that for each x E Bn-~ 

d (h~_l(x) <-- (6) * * * , hA,n-1 (X)) 10en_l, 

where hA,~_~* is the affine extension of h*_~ [ex B._~. 
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Since h~.,,_~ is a homeomorphic embedding, we can choose ~. < ~._~/2 such 

that 

(7) d ( x , y ) > ~ . _ l ~ d  (hA.n_l(x),hA,n_l(y))>61¢n (X, y E B . _ l ) .  

We let h. = hn[B. ,  where hB is the mapping of Lemma 3 applied to B = B._~, 
h = h._m and ~ = E.. So h* is a homeomorphic embedding and it is 5~-approxi-  

mated by h~.._~. For x E B. ,  let/~x denote the measure on ex B.  representing x. 

We have 

• ( .  ) . . .  d hn(x), h~(y)d#x(y) <_d (hn(x),h~,n_l(x)) 
x Bn  

x B n x Bn  

since h.~,._l is affine and d* is a convex metric. We have proved formula (6) for 

n. Moreover, 

d*(h*_l (x), h*(x)) < d*(h*_! (x), h.~,.-l* (x)) + d * (h~,n_l(x),h.(x))* * 
(8) 

-< 10¢.-1 + 5e. < 12.5¢._1; 

if d(x,y)  >- ~._~ then d*(h~(x),h~(y)) 
(9) 

>- d*(h~,n-l(x),h~,n-~(y)) - 10¢n > 51¢.. 

By (8), the mappings h,~ converge uniformly on K = n Bn to a continuous map- 

ping h*. For x E K, we have d*(h~(x),h*(x)) < Y'~*=n 12.5~i _ 25~.. Now, by (9), 

d(x,y)  >- ~.-I ~ d*(h*(x),h*(y)) >- 51¢. - 50~. = ¢., which proves that h* is a 

homeomorphic embedding. By (6), h* is the uniform limit of  h~,. and hence it is 

affine. Let 

/ Y =  n u O(hi(x)) 
n>_l x ~ . K  - -  / 

We will show that h*(K) = M(Y,S)  = Mo(Y,S). First observe that every measure 

h*(x) (x E K), being a limit of  the hi(x)'s, is invariant and carried b y  Y. To 

prove the converse, it suffices to show that every ergodic measure on Y is in 

h*(K). We show this for each measure being a d*-limit of  blocks appearing in Y. 

Let  # be such a measure. Fix some n and r E N, and let b be a block appearing in 

Y such that d*(b,#) < ~. and I bl = r2m, where m is the number of  Lemma 3 ap- 

plied, as previously, to B = B._I,  h = h~_~ and ~ = e.. By the definition of  Y, the 

block b appears in hi(x) for some i >__ n and x E K. Now, by the inductive con- 
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struction of  h; and by (ii) of Lemma 3, it is seen that hi(x) can be divided into 

blocks bk of  length 2 m such that each bk[1,2 m) appears in h~-l(Y) for some 

y E ex B,_~, and d**(bk[1,2m), h*_~ (y)) -< en. If  m is large enough we also have 

d**(bk,h*_~ (y)) -< 2~,,. For large r, b is of  small d**-distance from a concatena- 

tion of  r blocks bk. Thus, by Lemma 2, 

* * X d**(b, conv h,,_l(exBn-l)) --- 5~ ,  i.e. d**(b, hA.,_l( ,,)) <- 5en, 

for some xn E B~_~. Since d* ___ d**, we obtain d*(p.,h,~,n_~(x,,)) --- 6~,. Passing to 

the uniform limit in n we conclude that # = h*(limx~) E h*(K). Finally, since 

d** = d* for measures, we also obtain d**(b,#) <- l ien, which proves that tz E 

Mo( Y, S) and the proof is completed. 

V. Passing to a Toeplitz flow 

In this section we present the construction of  a Toeplitz sequence 3 with 

M(O(3),  S) affinely homeomorphic to a given Choquet simplex K. In view of The- 

orem 3, we assume that K is represented as M(Y,S) = Mo(Y,S) for a certain 

0-1 subshift (Y,S). We let 12 be the two-point compactification of  Z, say I2 = 

Z U { -o% oo }. The construction below is based on that of [13, sec. 4]. 

CONSTRUCTION. Let bn be a sequence of 0-1 blocks appearing in Ywith I bn ] = 

1~=~ (2 i -  1) and such that each block appearing in Y initiates some of  the bn's. 

Let cn be a copy of b~ obtained by replacing the symbols 0 and 1 by - n  and n, 

respectively. We define the sequence 3 E I~ z by induction. In the first step we let 

3(J) = Cl f o r j  = 0 mod 4 ([cll = 1). 
After the nth  step, 3 is defined on a periodic subset of Z, with the period p .  = 

IIi~l 2 i+I, leaving p~ = ]-li~l (2 i+1 - 1) unoccupied positions in each period. In 

the (n + l)st step we let pn+l = I[7_-+~ l 2 i+l. If n is odd then we fill out all the p,~ 

unoccupied positions in each of the p,-intervals [0,pn) + kp,,+~ with the consec- 

utive values of c~+~ (notice that Ico+~l =p£). In case of n even we fill out in the 

same way the p~-intervals [ -pn,0)  + kp,,+l. We obtain a pn+l-periodic sequence 

with P,+I' = 1I~_-+1 ~-= (T +l - 1) unoccupied positions in each period. In this manner 

3 is defined as a dyadic Toeplitz sequence in r~ z. The following properties of 3 and 

its orbit closure will be useful: 

(10) the density of _ n in 3 equals ~,, = p~,_~/p,, _< 2-t"+~), hence the supremum 

of the densities of Per2n(3) equals d(3) = ~,,n~l/~ < 1, so 3 is not regular; 

(11) by minimality of 0(3)  it is easy to see that for ~o E O(3), 

Aper(oo) = {j E Z:~o(j) = +oo1. 
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For the sequence p = (p , )  the p-density of  a set A C Z is given by 

Dp(A) = limp~ -~ [A I"1 [0,p.)l 
n 

provided the limit exists. By the same argument as in Lemma 1 in [1] and in 

Lemma 4.2 in [13], we have 

(12) the set W = [¢o E O(3) : Aper(¢o) is two-sided infinite and Dp(Aper(¢0)) = 

1 - d(3)l is of  measure 1 for every measure in M ( O ( 3 ) , S ) .  

For ¢o E W and m E N it is easily seen that 

(13) D p [ j E Z : m  <_ I~0(j)[ < oo1-- ~ /~,. 
t l > m  

For e > 0, by n, we denote such a natural number that ~n___,, ~, -< e. For any fi- 

nite block c over E we denote by I (c)  the number of infinite symbols in c and we 

define ~o(c) to be the 0-1 block such that I  (c)l -- I(c), and the consecutive val- 

ues of  ~o(c) are 0 or 1 according as the consecutive infinite symbols in c are - o o  

or 0% respectively. If c has no infinite symbols then ~o(c) = •. Analogously, ~o is 

defined on ~z; for wE O(3) ,  ~o(¢o) is determined by o~lAper(o~). Now, the 

equality 

(14) ~o(W) = Y 

has exactly the same proof  as Lemma 4.3 in [13] (the differences between the con- 

struction of  3 and that of  ~ in [13, sec. 4] are easily seen to be inessential). 

LEMMA 4. A n element o~ E W is p-generic for a measure ~ E M(  0 (3), S) i f  and 

only i f  each block c over Z appears in ¢o with p-density. The p-density is then equal 

to ~( U¢). 

PROOF. For a given block c over Z and ~ > 0 define 

Uc,¢ = [~ E ~z :w( i )  = c( i )  if c(i)  is finite, w(i) E [ - ~ , - n ~ / . c ) ]  

if c ( i )  = - ~ ,  w(i) E [n~/l(c),~] if c( i)  = ~ ] .  

Clearly Uc,~ is a clopen cylinder. Now, let w E Wand  let SJ(w) E U~,~\U¢. Then 

at least one of  the infinite symbols in c is replaced in w [ j , j  + l c]) by a finite sym- 

bol with modulus at least n~/t(~). Since, by (13), all such symbols in o~ have the 

p-density at most e/I(c),  we have proved that the upper p-density at which the tra- 

jectory of  w visits U~,~\ U~ is at most ~. Now, let ~ E Wb e  generic for t~. Fix a 

block c over 2. Since U~,~ is clopen, it is visited by the trajectory of w with the 

p-density t~(U~,~). Both upper and lower p-densities of  visiting U~ are now be- 
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tween #(Uc.,) and/~(U~,,) - e, hence the p-density of c in 60 exists and equals 

lim,_.o #(Uc,~) = #(Uc). Conversely, suppose that the p-densities of  all the blocks 

in 60 exist. We ought to show that the trajectory of 60 visits every cylinder U of the 

form 160 E ~z:60(i) E A~, i = 1,2 . . . . .  n} with all A~ clopen in r.. Every such U 

can, for given e > 0, be obtained as a disjoint union of finitely many cylinders U~k 

with I(ck) = 0 and at most 2n cylinders U~j,6 with ~5 < e/2n. Thus the upper and 

lower p-densities at which the trajectory of 60 visits U are between D and D + E, 

where D is the joint p-density of  the blocks ck and cj in 60, which ends the proof. 

R E ~  2. In the notion of the foregoing proof we have obtained that the 

function # --, #(U) on M(O(3) ,  S) is a uniform limit of  the functions t~ --'/z(U~), 

where U~ = U ,  Uc, U Uj U~j. 

For a block c over r~, we denote by m(c) the maximal modulus of the finite sym- 

bols in c. 

LEMMA 5. Let p E M(Y,S)  be such that ~ :/: f~, where 

W~ = 160 E W: ~o(60[0,pn)) converges in d* to ~1. 

Then every 60 E W~ is p-generic for the same measure # (depending only on p). 

PROOF. Let 60 E W~. By Lemma 4, it suffices to show that each block c over 

I; appears in 60 with a p-density depending only on v. First, let c contain no infi- 

nite symbols. Then c appears in 3 periodically and hence it appears with the same 

p-density; write D(c), in each element of 0(5) .  Now consider a block c appear- 
ing in 60 and satisfying 

(15) ¢(c) = b ~e ~ ;  

(16) the last symbol of  c is the only one in c of  modulus m(c). 

Denote by j0 + kopmtc) (k0 E Z, 0 - J 0  < Pro<c)) a position of c(0) in some ap- 

pearance of  c in 60. Recall the construction of 5 and observe that in 60 (as in 3) the 

symbols +n fill all the positions unoccupied by smaller symbols in pn-periodically 

repeating intervals of length Pn-~ (called pn_~-intervals). Since in c there appears 

an infinite symbol, we conclude that whenever c appears in 60, its last symbol is the 

first +m(c) in such a pmtc)-periodically repeating pm~)_rinterval.  Thus all ap- 

pearances of c in 60 differ by multiples of Pmtc), and c(0) occupies the position 

J0 mod Pmt~), while the first symbol _+oo in c occupies also a constant position 

j mod Pmtc). Since Aper(60) has either 0 or Pmtc) elements in each Pmtc)-interval, 
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the corresponding appearances of b in ~o(o~) differ by multiples ofp~tc  ), say b(0) 

occupies there a position j '  mod P~,tc). 
Conversely, by periodicity of  finite symbols in ~, it is not hard to see that c 

appears in ~ whenever b appears in ~o(oJ) at a position j '  rood P~,t¢). In conclu- 

sion, for given n E N, c appears in oJ[0,pn) as many times as b does in ~o(o~[0,pn)) 

at the position j '  mod P,~t~). Since P~,tc~ = ~,=t()(2i+1 _ 1) is an odd number, 

the frequency of  b in ~o(o~[0,p.)) at the position j '  rood P'~t¢) is denoted by 

F~t*~t0,p.)) (b,p;~cc),j'). By the assumption of this Lemma, ~o(o~[0,p.)) converge in 

d* to v E M(Y, S) = M0 (Y, S), hence the convergence holds in d**. In particular, 

* *  t t - - 1  
F~,(o[0.p,)) ( b, Pm(c),J') ~ Pro(c) v(Ub). 

NOW, since w E W, 

(17) the appearance of c in ~0 has the p-density Pm~)v( Uo)(1 - d(3)). 

To see that the family of the blocks satisfying (15) and (16) is "rich enough" we 

show that for every block c appearing in O(3), relatively to O(3), Uc is a finite 

disjoint union of cylinders over blocks satisfying (15) and (16). In fact, whenever 

c appears in some ~ E O(3), it can be extended to the right until the first finite 

symbol of modulus m greater than m (c). So obtained block c'  satisfies both (15) 

and (16), and m(c')  = m. Now, U¢ relatively to O(3), U¢ is equal to the disjoint 

union of U~, over all such extensions c' of c. Recall the construction of 3 and ob- 

serve that between any two symbols of different moduli nl and n2, say n~ < n2 

in 3, there appears a symbol of modulus nl - 1. By a standard argument for coor- 

dinatewise limit, the same is valid in each ~0 E 0(3)  even for n2 = 0o. So, for each 

above extension c' of c we obtain that m (c') = m (c) + 1, otherwise between _ 00 

and the last symbol +m(c')  in c' a symbol of modulus m(c')  - 1 would be miss- 

ing. By the periodicity of  finite symbols, 0 (  3 ) admits only finitely many such ex- 

tensions c' of c, which ends the proof. 

THEOREM 4. There exists an affine homeomorphism between M(Y, S) and 

M(O(3) ,S ) .  

PRooF. First observe that the set { v E M(Y, S) : W~ #: O } contains all the er- 

godic measures on (Y, S). In fact, let ~ E Y be generic for such a measure v. By 

(14), we can choose ~0 E Wwith ~(o~) = ~, and consequently o~ E W~. The desired 

affine homeomorphism will be defined as 

#(Uc) = D(c) 

~(Uc) '-~ =Pmtc) v( U, tc))(1 - d(3)) 

follows: O(v) = #, where 

for c without infinite symbols, 

for c satisfying (15) and (16). 
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Since for every block c, Uc is a finite union of  cylinders over blocks satisfying the 

above two cases, the formula determines each #( t ic) .  At the same time the 

uniqueness of ~(u) is guaranteed. By Lemma 5, we recognize (see (17)) that if 

W~ ~ ~ then ~(p)  exists in M ( O ( 3 ) , S ) ,  and hence, by an affine extension, the 

same is true for each ~, E M(Y,S) .  It is also seen that the function u ~ ~(J,)(U¢) 

is continuous for each block c, which, by Remark 2, implies the continuity of  ~. 

Now, since ~o(c) with c satisfying (15) and (16) runs through all the 0-1 blocks ap- 

pearing in Y (see (14)), it is seen that • is 1-1. It only remains to show that each 

ergodic measure # on 0 (3)  is in the image of  ~. 

Since/~(W) = 1, we can choose co both generic for ~ and contained in W. Now, 

it suffices to show that co E Wp for some 1, E M(Y,S) .  To this end fix a 0-1 block 

b and e > 0. Each appearance of  b in ~o(co) corresponds to an appearance in co of  

a block c such that ~o(c) = b and both ending symbols of c are infinite. Now, every 

such c can, in a unique way, be extended in co to the right until the first finite sym- 

bol _+m with m > m(c). Denote the so obtained block by c'. Clearly there are 

finitely many possible so obtained blocks c'  with rn _< n~, and, by Lemma 4, the 

appearance of  all such blocks in co has a p-density. Since co E IV, the appearance 

of  the remaining blocks c'  (with m > n~) has upper density at most e. We have 

proved that the.joint appearance of  all such blocks c' in co has a p-density. Again, 

since co E W, we conclude that F~t,oiO.pn))(b) converges in n, which implies that 

~o(co[0,pn)) converges in d* to some measure u E M(Y,S) ,  and hence co E W~, 

completing the proof. 

In the sequel we show that E in Theorem 4 may be replaced by 10,11. The 

method used here is a modification of  that in [1, sec. 3]. 

LEMMA 6. There exists a 0-1 dyadic Toepfitz sequence 3 ° such that the flow 
(O(3°) ,S)  is topologically conjugate to (O(3) ,S ) .  

PROOf. Define a map o: ~ : z .  {0,1 ]z by c0°(j) = 2(sign co(j) - 1/2). Clearly 

° is continuous and it commutes with S. It remains to show that o is 1-1 on 0 (3 ) .  

Fix ¢o ° E 0 (3  °) a n d j  E Z. Since the value of  coo(j) determines sign co(j), it suffices 

to show that we are able to recover [ o~(j)[ using coo. For given n E Nconsider  the 

values coo(j + kp,,) for k ~ Z. If  [co(j)] _< n then these values are constant for k. 

Conversely, the above fails if [co(j)[ > n. In fact, in this case j  is one of  the posi- 

tions unoccupied by the Pn-periodic part of  co, say each j + kp,, is the ith such po- 

sition in the kth p~-interval (k E Z).  For some block bno used in the construction 

of  3 (no >- n) we have bno(i) = 1 - coo(j) (we need not consider the trivial case of  
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Y consisting of  a constant sequence). Thus, in the Pn-interval filled out (in the 

noth step) with bno[0,p;,) we find ~0°(j + kp,) = 1 - o:°(j).  We have proved that 

[o:(j)[ = sup{n ~ N:~o° ( j  + kp~) = 60°(j) for all k E Z},  

and we are done. 

We are in a position to state our main result, the proof of which is now a com- 

bination of  Theorem 3, Theorem 4 and Lemma 6. 

T~Eova~t 5. For every compact metric Choquet simplex K there exists a 0-1 
dyadic Toeplitz flow whose set of invariant measures is affinely homeomorphic 
toK. 
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